On Binary Reducibility

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Width-Bounded Reducibility and Binary Search over Complexity Classes

We introduce a notion of width-bounded reducibility. Width-bounded reducibility provides a circuit-based realization of RuzzoSimon-Tompa reducibility [RS-84], and allows us to generalize that notion of reducibility. We show that reductions of simultaneously restricted width and depth provide a characterization of binary search over complexity classes, as introduced by Wagner [Wa-89] and Buss an...

متن کامل

On reducibility of weighted composition operators

In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...

متن کامل

On ~-reducibility versus Polynomial Time Many-one Reducibility*

We prove that each element of a class of f,anctions (denoted by NPCtP), whose graphs can be accepted in nondeterministic polynomial time, can be evaluated in deterministic polynomial time if and only if '/-reducibility is equivalent to polynomial time many-one reducibility. We also modify the proof technique used to obtain part of this result to obtain the stronger result that if every ,/-reduc...

متن کامل

On Turing Reducibility

We show that the transitivity of pointwise Turing reducibility on the recursively enumerable sets of integers cannot be proven in P− + IΣ1, first order arithmetic with induction limited to Σ1 predicates. We produce a example of intransitivity in a nonstandard model of P+IΣ1 by a finite injury priority construction.

متن کامل

Finitary Reducibility on Equivalence Relations

We introduce the notion of finitary computable reducibility on equivalence relations on the domain ω. This is a weakening of the usual notion of computable reducibility, and we show it to be distinct in several ways. In particular, whereas no equivalence relation can be Π n+2-complete under computable reducibility, we show that, for every n, there does exist a natural equivalence relation which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1988

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(88)80034-9